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SUMMARY

In this paper, we investigate �uid �ows between eccentric cylinders by means of two stream-tube
analyses. The �rst method considers a one-to-one global transformation function that allows the physical
domain to be transformed into a mapped domain, used as computational domain, that involves concentric
streamlines. The second approach uses local transformations and domain decomposition techniques to
deal with mixed �ow regimes. Both formulations are particularly adapted for handling time-dependent
constitutive equations, since particle-tracking problems are avoided. Mass conservation is veri�ed in both
formulations and the relevant numerical procedure can be carried out using simple meshes built on the
mapped streamlines. Fluids obeying anelastic and viscoelastic constitutive equations are considered in
the calculations. The numerical results are consistent with those in the literature for the �ow rates tested.
Application of the method to the K-BKZ memory-integral constitutive equation highlights signi�cant
di�erences between the model predictions and those provided by more simple rheological models.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerous studies have been devoted to �ows in the annulus of eccentric cylinders, generally
related to lubrication problems occurring in journal bearings [1–15]. The growing interest in
considering materials with non-Newtonian properties in lubrication [6, 7, 10] has led to gener-
ate various numerical techniques being formulated for investigating such �ows with complex
constitutive equations, where experimental, mathematical and computational techniques are
concerned.
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Various methods, involving notably spectral approaches, have been developed in the liter-
ature in order to simulate �ows of �uids obeying complex constitutive equations in eccentric
geometries. Formerly, analytical methods were used to determine the �ow characteristics, as
done for example by Phan-Thien and Tanner [8], who proposed an asymptotic method to eval-
uate non-Newtonian e�ects in a journal bearing. Davies and Li [9] adopted a pseudospectral
method with bipolar transformation to simulate non-isothermal �ows between eccentrically
rotating cylinders, using a White–Metzner viscoelastic di�erential model for the �uid. Gwynl-
lyw and Phillips [11] proposed preconditioned iterative methods for calculating unsteady �ows
of generalized Newtonian �uids between eccentric cylinders by spectral element calculations.
Beris et al. [12, 13] have studied steady �ows between slightly eccentric cylinders, using
anelastic (Newtonian, second-order �uid) as well as viscoelastic di�erential models, where a
Galerkin �nite-element method and a spectral �nite-element technique were applied. Similarly,
the analysis proposed by Chawda et al. [14] involved numerical pseudospectral methods to
compute steady-state �ow between eccentric rotating cylinders and to explore the stability of
three-dimensional disturbances, for an upper-convected Maxwell �uid. A spectral element ap-
proach has been recently proposed by Li et al. [15] in order to investigate speci�c lubrication
problems related to the separate and combined e�ects of shear-thinning, temperature-thinning
and temperature-thickening in two-dimensional journal bearings.
Despite the signi�cant numerical e�ort to simulate �ows of viscoelastic �uids in eccentric

geometries, we are not aware, at the present time, of such �ow calculations with memory-
integral constitutive equations. This situation can probably be explained by di�culties arising
when the kinematic tensors and stresses on pathlines have to be evaluated. As pointed out by
many authors [16, 17], such quantities based on relative deformation gradients require very
accurate estimates for particles on their streamlines (or pathlines) that generally do not pass
through the mesh nodes de�ned in the discretization procedure.
One of the main objectives of this paper is to apply analyses based on stream-tube methods

[18–21] that may enable �ows of incompressible �uids obeying time-dependent constitutive
equations to be simulated using simple computational domains. Calculations, corresponding
here to steady and isothermal situations, are related to two di�erent formulations where trans-
formations of the physical �ow domain � are concerned. The �rst approach enables �ow
computations in a mapped domain �∗, where the streamlines (or pathlines) are concentric
circles, by means of an unknown global transformation to be determined numerically. Such a
method is limited to pure circulating �ows in eccentric geometries. The second formulation
provides possibilities to compute main �ow zones as well as vortex regions using domain de-
composition and local transformation functions. Some properties related to the former global
method are veri�ed by the local approach, particularly those concerning the simplicity of
handling memory-integral constitutive equations. So, the additional geometrical elements al-
low computation of a general �ow �eld by still considering the concepts of streamlines and
stream tubes. Both analyses are expected to permit accurate calculations of annular �ows for
various constitutive equations, including notably time-dependent models, with spatial variables
in a simple computational domain. The �uids, assumed to be incompressible, are investigated
under steady and isothermal conditions. The inner cylinder C0, of radius r0, rotates with an
angular velocity !. The outer cylinder C1, of radius r1, is at rest. The parameter e denotes
the distance between the axes of the cylinders. The eccentricity is de�ned as �= e=(r1 − r0).
This paper is organized as follows. Firstly, the basic equations of the two formulations

to be applied to �ow between rotating cylinders are presented with speci�c developments
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Figure 1. Physical and mapped domains � and �∗ for the two-dimensional �ow between eccentric
cylinders, with a global transformation function.

relevant to the use of time-dependent constitutive equations. Di�erent complex rheological
models are proposed. Next, a speci�c approach is presented for evaluating kinematic quantities
related to moving particles in the �ow, for the use of memory-integral constitutive equations.
The computational procedure, de�ned to solve the governing equations, is then applied to
annular �ows, with and without recirculation, for various eccentricities and rheological models.
The numerical results are compared to existing data in the literature and computed solutions
relevant to a memory-integral constitutive equation are presented.

2. BASIC EQUATIONS FOR GLOBAL TRANSFORMATIONS OF THE
PHYSICAL DOMAIN

This section depicts an analysis similar to the method already presented for �ows involving
open streamlines such as duct �ows [19, 20] and free surface �ows [21]. Such cases have
concerned transformed domains where the mapped streamlines are parallel and straight. Pure
recirculating �ows, already suggested in a previous paper [19], have been investigated in a
recent study (Radu, PhD Thesis [23]) and are now considered for a plane physical domain
� shown in Figure 1, referred to Cartesian co-ordinates (x1 = x; x2 =y; x3 = z). The an-
nular domain �∗ between the two concentric circles of Figure 1 is related to co-ordinates
(X 1; X 2; X 3) such that X 1 =R; X 2 =Z ; X 3 =�. A transformation T : (X 1; X 2; X 3)→ (x1; x2; x3)
between domains �∗ and � may be de�ned by the following equations:

x= a+ R�(R;�) cos�; y= b+ R�(R;�) sin �; z=Z (1)

The function �(R;�) is unknown and the mapped streamlines of domain �∗ are assumed to
be concentric circles. The transformation T is assumed to be one-to-one provided its Jacobian
J , given by

J =
∣∣∣∣ @(x; y; z)@(R; Z;�)

∣∣∣∣ =R�(� + R�′
R)=	1 (2)

(with R �=0, � �=0) is non-zero. This corresponds to the non-existence of circulatory �ow
regions. The mapping function � must be determined numerically, using �∗ as the computa-
tional domain.
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The di�erential operators @=@x; @=@y; @=@z may be expressed in terms of (R; Z;�) by the
following relations:

@
@x
=
[

1
R�(� + R�′

R)

] [
R(�′

� cos�− �sin �) @
@R
+ (�cos� + R�′

R cos�)
@
@�

]
@
@z
=

@
@Z

@
@y

=
[

1
R�(� + R�′

R)

] [
R(�′

� sin � + �cos�)
@
@R

− (� sin � + R�′
R sin �)

@
@�

] (3)

Using now two Cartesian variables (x1; x2), in conditions of in�nite journal bearings, such
that x= x1e1 + x2e2, we may write the natural basis vectors as [19]

b1 =
@x
@R
=
1
	1
[(R�′

� cos�− R�sin �)eR + (�cos� + R�′
R cos�)e�]

b2 =
@x
@�
=
1
	1
[(R�′

� sin �− R�cos�)eR + (� sin � + R�′
R sin �)e�]

(4)

By de�ning a stream function 
(x; y), the velocity components are u=−@
=@y; v= @
=@x.
Let us consider in the mapped domain �∗ a reference section at �=�0, where we put


(R;�0)=
∗(R) (5)

Using Equations (3) and assumptions concerning streamlines in the mapped domain �∗,
the velocity components, in terms of the variables (R;�), become

u = − 1
	1
[R(�′

� sin � + �cos�)]
d
∗(R)
dR

v =
1
	1
[R(�′

� cos�− �sin �)] d

∗(R)
dR

(6)

The function 
∗(R) of Equations (5)–(6) may be considered as the mapped stream function
related to a streamline in �∗. The expression of the velocity vector V in the basis (b1; b2) is
then readily given by

V=�1(R;�)b1 =
{[
(�′

� sin 2� + �cos 2�)
�	1

]
d
∗(R)
dR

}
b1 (7)

The velocity components of Equation (6) verify the incompressibility condition, thus
satisfying conservation of mass.

2.1. Basis vectors related to curvilinear co-ordinates

Owing to the geometrical characteristics of the physical �ow domain �, we adopt the cylindri-
cal co-ordinates (r=1; �=2) of the orthonormal basis ci, allowing the curvilinear co-ordinates
(R=1;�=2) of domain �∗ to be related by means of an unknown mapping function �
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such that

r= �(R;�); �=� (8)

The natural basis bi can be expressed by the following equations:

b1 = �′Rc1

b2 = �′�c1 + �c2
(9)

Using the Jacobian 	= |@(R;�)=@(r; �)|, the reciprocal vectors �1; �2 can be written in terms
of the basis vectors ci as

�1 =
1
�	

(�c1 − �′�c2)

�2 =
1
�	

(�′Rc2)
(10)

Thus, the metric tensors de�ned by

G−1
ij = bibj

Gkl = �k�1
(11)

may be expressed by the following matrices related to bi:

[G−1] =

(
(R�′R + �)

2 R�′�(R�
′
R + �)

R�′�(R�
′
R + �) R�′� + R

2�2

)

[G] =



(
�′�2

�2
+ 1
)

1
(R�′R + �)2

− R�′�
(R�′R + �)R2�2

− R�′�
(R�′R + �)R2�2

1
R2�2


 (12)

2.2. Particle tracking

According to the one-dimensional velocity equation (7), the movement versus time of a
particle X occupying respective positions M (R;�) and M0(R;�0) at times t and t0 (reference
time) is given by

t − t0 =
∫ �

�0

ds
�1(R; s)

(13)

This simple equation is written for circular mapped streamlines of domain �∗. Such a
property avoids the di�culties associated with particle tracking, usually encountered with
time-dependent constitutive equations.
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2.3. Dynamic equations

Ignoring body forces, the momentum conservation equation (steady-�ow conditions) is
given by

∇�̃=�V · ∇V (14)

where � denotes the �uid density and �̃ the total stress tensor written as

�̃=−pĨ + T̃ (15)

where p denotes the pressure and T̃ is the extra-stress tensor given by the constitutive equa-
tion. The two �rst-order partial di�erential equations derived from Equation (14) may be
expressed in terms of the pressure p, the stress components T ij and the velocities involved
in the term �V · ∇V. By eliminating the pressure, these two equations are reduced into one
second-order di�erential equation as

@2Txx
@y @x

+
@2Txy
@y2

− @2Tyy
@x @y

− @2Txy
@x2

=�
(
vx
@2vx
@y @x

+ vy
@2vx
@y2

+
@vx
@y

@vx
@x
+
@vy
@y

@vx
@y

− vx @2vy@x2

−vy @2vy@x @y
− @vx
@x

@vy
@x

− @vy
@x

@vx
@y

)
(16)

In Equation (16), vx and vy denote the components of the velocity vector V in Cartesian
co-ordinates.
For computational purposes, the di�erent quantities of Equation (16) are expressed in terms

of variables (R;�) of mapped domain �∗, using derivative operators given by Equations (3)
[21].

3. BASIC EQUATIONS FOR LOCAL TRANSFORMATIONS

3.1. Transformation of sub-domains

To compute mixed regime �ows in the annulus domain �, we now consider sub-regions �i
that may involve open or closed elementary stream tubes or both. General features of this
approach have been presented elsewhere [23]. Figure 2(a) illustrates a sub-domain �m of
� limited by two azimuth sections de�ned at angles �m and �m+1 (m=1; 2; : : : ; m0) in the
eccentric annulus geometry. The m0 non-overlapping sub-domains �m are de�ned such that

�=
m=m0⋃
m=1

�m (17)

These sub-domains may involve open and closed stream tubes, a priori unknown, of the total
�ow domain �. We select, in each sub-domain �m, a reference azimuth section Sm, where
�= �0m (Figure 2(a)).
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Figure 2. Local transformation functions: (a) sub-domain �m of � in the eccentric annulus
geometry, involving a reference section Sm; (b) corresponding mapped domain �∗

m for the
local transformation; (c) geometrical elements for a closed streamline L of sub-domain �m

partitioned into two segments in mapped domain �∗
m.
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Let (x1; x2)m be the local polar co-ordinates in sub-domains �m of � de�ned with respect
to the reference �ow section Sm. Using a reference section S∗m identical in shape to Sm, we
denote by �∗

m the corresponding sub-domain of �m where the mapped streamlines are parallel
to a given direction (Figure 2(b)). Sub-domain �∗

m is referred to a co-ordinate system 	j

expressed by

	1 = s; 	2 =R (18)

We de�ne local one-to-one transformations Tm : (x1; x2)→ (	1; 	2) involving unknown local
functions 
(s; R) and �(s; R) (or �1(s; R) and �2(s; R)) such that

r= 
(s; R)= �1(s; R)R; �=�(s; R)= �2(s; R)s=R (19)

The co-ordinate R corresponds to the radius r at the reference section S∗m(s0; R) of sub-
domain �∗

m. The co-ordinate s is de�ned in relation to the curvilinear abscissa � of a moving
particle on its streamline, given by

�= �0 +
∫ t

t0
|V(�)| d� (20)

where �0 denotes the abscissa corresponding to the reference section S∗m of the mapped sub-
domain �∗

m and |V(�)| the modulus of the velocity vector V on the streamline points. In
Equation (20), the times t0 and t are associated with positions s0 and s of a material point,
respectively.
De�ning by sM (sM¡+∞) the given total length of a streamline L, originating at a point

M0, in a sub-domain �m and by �M (�M¡ +∞) the corresponding maximum curvilinear
abscissa, we may de�ne the variable s by the following relationship:

s=(�=�M )sM (21)

In order to express the variable s for a streamline L of zero velocity (presence of a wall
where the �uid adheres), the co-ordinate � related to a point M is assumed to be the curvilinear
distance M0M.
Figure 2(c) illustrates the case of a closed streamline L belonging to a sub-domain �m,

intersecting the reference section Sm at points Md and Me. In the corresponding mapped
domain �∗

m, this transformed streamline is partitioned into two di�erent segments originating
at points M ∗

d and M
∗
e , the respective transformed points of Md and Me at the mapped reference

section S∗m. Accordingly, the two points M1 and M2 of the streamline L are associated with
transformed points M ∗

1 and M
∗
2 of two di�erent segments.

The one-to-one assumption for the local transformations Tm implies that the Jacobian 	
expressed by

	=det |@(xi)=@(	j)|= 
′s�′R − 
′s�′R (22)

is non-zero. In Equation (22), 
′s, �
′
R, 


′
s and �

′
R denote the partial derivatives in terms of

variables s and R. Derivative operators relating the co-ordinates (r; �) to the new system of
local co-ordinates (s; R) are thus given by

@=@r = 1=	[�′R@=@s− �′s@=@R]
@=@� = 1=	[
′R@=@s− 
′s@=@R]

(23)
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Given a point M ∗(s; R) of �∗
m, the unit vectors ci related to cylindrical co-ordinates (r; �)

can be expressed in terms of the natural basis (gs; gR) (with s=1, R=2) according to the
relations

c1 = (1=	)[�′sgs − �′R · gR]; c2 = (1=	)[
′sgs − 
′R · gR] (24)

Conversely, we also obtain the equations

gs= 
′sc1 + 
�
′
sc2; gR= 
′Rc1 + 
�

′
Rc2 (25)

and hence the reciprocal basis vectors (gs; gR) can be written as

gs = [1=(
	)][
�′Rc1 − 
′Rc2]
gR = [1=(
	)][−
�′sc1 + 
′sc2]

(26)

From these expressions, the matrices of metric tensors given by G−1
sR =[gs · gR] and

GsR=[gs · gR] can be written as

G=

[
Gss GsR

GRs GRR

]
(27)

of components

Gss = (
′s)
2 + 
2(�′s)

2; GRs=GsR= 
′s

′
R + 


2�′s�
′
R

GRR = (
′R)
2 + 
2(�′R)

2
(28)

and

�0 =
∑
p
(ap�2p)=

∑
p
(ap�p); p=1; 2; 3 (29)

of components

Gss = [1=	2][(�′R)
2 + (
′R=
)

2]

GsR = GRs=[1=	2][�′R�
′
s + (


′
R


′
s)=


2]

GRR = [1=	2][(�′s)
2 + (
′s=
)

2]

(30)

3.2. Kinematic equations and particle tracking

In polar co-ordinates, the velocity component equations written in terms of a stream function

(r; �) as vr =(1=r)@
(r; �)=@�; v�=−@
(r; �)=@r can be expressed by means of variables
(s; R) as

vr = −{
′s(s; R)=[
(s; R)	]}d
∗(R)=dR

v� = {�′s(s; R)=	} d
∗(R)=dR
(31)

In Equations (31), 
∗(R) denotes the transformed stream function of 
, written from a
reference kinematic function at section S∗m of co-ordinates (s0; R) such that

d
∗(R)=dR= v�(s0; R)=H ∗(R) (32)
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Since the relevant unknowns of the problem are expected to be determined iteratively, the
function 
∗(R), a priori unknown, must be updated at each step of the procedure. We also
postulate the following conditions at the reference section:


′R(s0; R)=1; �′s(s0; R)=0 (33)

From Equation (32), the velocity equations (31) become

vr = −{
′s(s; R)=[
(s; R)	]}H ∗(R)

v� = −{�′s(s; R)=	}H ∗(R)
(34)

In the �ow domain, the co-ordinate � on a streamline of non-zero velocity can be expressed
by the following equation:

�= �0 +H ∗(R)
∫ s

s0
[�′s(	; R)=	]d	 (35)

Concerning particle tracking for a material point moving on its streamline in a sub-domain
�m, the movement versus time is expressed by a relationship similar to Equation (13). The
time t0 is related to the reference sections of domains �m and �∗

m.

3.3. Dynamic equations

Ignoring inertia and body forces, we can write the dynamic equations, along the two axes
(r; �) of the physical domain �, using the local variables (s; R) of the sub-domain �m under
consideration as follows:


[�′s@p=@R− �′R@p=@s] + �′s@(
T rr)=@R− �′R@(
T rr)=@s

−�′R@(
T rr)=@s− 
′s@(
T r�)=@R+ 
′R@(T r�)=@s=0 (36)


′s@p=@R+ 

′
s@p=@s+ �

′
s@(
T

r�)=@R− �′R@(
T r�)=@s

+ 
′s@(T
rr)=@R− 
′R@(T rr)=@s=0 (37)

4. CONSTITUTIVE EQUATIONS AND SPECIFIC RELATIONS

Several models for inelastic and viscoelastic materials obeying di�erential and memory-integral
equations are adopted in the �ow computations.

4.1. Inelastic models

The models retained here correspond to the classic Newtonian �uid and a non-Newtonian
purely viscous �uid given by

T̃ = �(D̃)D̃ (38)
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where the viscosity � depends on the rate-of-strain tensor D̃. The viscosity function obeys a
Carreau law [12] written as

(�− �∞)
(�0 − �∞) =

1
(1 + Ka)b

(39)

In Equation (39), the velocity gradient  is related to the second invariant �D̃ of D̃ by the
equation

=
√
2�D̃ (40)

K denotes a material constant of the �uid and a, b are dimensionless coe�cients. �0 and �∞
(�0¿�∞) are corresponding viscosities at low and high shear rates, respectively.

4.2. Viscoelastic models

4.2.1. Di�erential models. The constitutive Oldroyd-B equation expresses the extra-stress
tensor T̃ according to the following implicit form:

�1
	T̃
	t

+ T̃ =2�0

(
D̃+ �2

	D̃
	t

)
(41)

where 	=	t denotes the upper convected derivative [24] de�ned for a contravariant symmetric
tensor, �1 a relaxation time and �2 is called the retardation time. The particular case �2 = 0
gives the upper-convected Maxwell model [24]. For these models, the corresponding viscosity
function is a constant.

4.2.2. The integral model. The memory-integral equation adopted here is a time-dependent
codeformational K-BKZ model involving multiple relaxation times, of the form proposed by
Papanastasiou et al. [25]. In our calculations, we used the data provided by Chai and Yeow
[26] for a polymer solution, expressing the stress tensor as follows:

T̃ (t)=
∫ t

−∞

3∑
p=1

ap
�p
exp

(
− (t − t

′)
�p

)

B̃t′(t)


− 3 + � tr B̃+ (1− �) tr B̃−1 dt
′ (42)

where t denotes the time under consideration, t′ a previous time with t′6t, ap and �p are
the moduli and corresponding relaxation times, respectively. B̃t′ is the Finger tensor, B̃−1

t′ the
Cauchy tensor related to the con�guration at times t′. 
 and � denote material constants of the
�uid, determined experimentally and are found to be 
=500 and �=0:001. The coe�cients
ap and �p of the model are given in Table I.

4.3. Kinematic quantities for the memory-integral model

The Finger and Cauchy tensors to be considered in the constitutive equation (42) are related
to the deformation gradient tensor F̃t(t)= [@xmt′ =@x


t ] by the following relations [24]:

B̃t(t′) = [T F̃t(t′)F̃t(t′)]−1

B̃−1
t (t′) = T F̃t(t′)F̃t(t′)

(43)
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Table I. Numerical data of �p and ap used in the K-BKZ memory-integral
equation (after Chai andYeow [24]).

P �p(s) ap(Pa)

1 1.04 0.55
2 8:9× 10−2 5.46
3 5:2× 10−4 3:06× 10−3

To evaluate the deformation gradient tensor F̃t(t), we start from Adachi’s work [27, 28]
on Protean co-ordinates [29]. The approach, de�ned in relation to variables de�ned in global
or local transformation systems, is similar to that previously followed in stream-tube analysis
[30, 31] for �ows involving open streamlines.

4.3.1. Global transformations. According to the relevant curvilinear co-ordinate system
(	1 =R; 	2 =�) in the mapped domain �∗, we can express the deformation gradient tensor
as [24]

[F−1]=

(
@s=@R′ @s=@s′

1 0

)
(44)

with

@�
@�′ =

V (R;�)
V (R;�′)

(45)

@�
@R′ = V (R;�)

∫ �

�′

@V
@R
(R; 	)

d	
V 2(R; 	)

=V (R;�)
∫ t

t′

@V
@R
(R;�(�))

d�
V (R;�(�))

(46)

In Equations (44)–(46), variables (R′;�′) are referred to material positions at times t′. In
the present case, we have R′=R, according to the circular shape of the mapped streamlines
in domain �∗.
The Finger tensor components can be written in terms of the metric tensor G̃ in the basis

bi by the following matrix equation:

[B]= [F][G][F]T (47)

with the following components:

BRR =GR
′R′ (48)

B�� =GR
′R′ @�
@R′ +G

R′�′ @�
@�′ (49)

BR� =
(
@�
@R′

)2
GR

′R′ + 2
@�
@�′

@�
@R′ G

�′R′ +
(
@�
@�′

)2
G�

′�′
(50)
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Using the matrix of passage [A] from the natural basis bi to the cylindrical basis ci

[A]=


 f′

R fg′R

f′
� fg′�


 =

(
R�′R 0

R�′� R�

)
(51)

the components of B̃ can be written in the cylindrical basis ci as

Brr = BRR(R�′R + �)
2 + BR�2(R�′R + �)R�

′
� + (R�

′
�)
2B�� (52)

Br� = BR�(R�′R + �)R�+ B��R
2��′� (53)

B�� = B��(R�)2 (54)

are used to determine the Cauchy tensor components and also the invariants tr(B̃) and tr(B̃−1)
involved in the integral constitutive equation (42).
Stress calculations for di�erent positions of the material point on its closed streamline are

performed by taking into account the periodicity of the �ow, related to the angle � in the
mapped domain �∗. The tensor components are then evaluated for points M ∗ of the circular
mapped streamlines by six-point Gauss–Laguerre formulae.

4.4. Local transformations

The approach is quite similar to that followed for global transformations. The use of
co-ordinates s=1 and R=2 means writing the deformation gradient term in the following
matrix form, in the curvilinear basis (gs · gR) [23]:

[F−1]=

(
@s=@R′ @s=@s′

1 0

)
(55)

where (s; R) and (s; R′) correspond to material positions at times t and t′, respectively, with
R=R′. Similar Equations (49)–(50), we obtain

@s=@s′ = vs(s; R)=vs(s′; R)

@s=@R′ = vs(s; R)
∫ t

t′
@[vs(s(�); R)]=@R d�=vs(s(�); R)

(56)

According to Equation (40), the Finger tensor components expressed in a matrix form as

[A]=

[

′s 
�′s


′R 
�′R

]
(57)

are given by the following relations:

Bss = (@s=@s′)2Gs
′s′ + 2(@s=@s′)(@s=@R′)Gs

′R′ + (@s=@R′)2GR
′R′

BsR = BRs=(@s=@s′)Gs
′s′ + (@s=@R′)Gs

′R′

BRR = Gs
′s′

(58)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:669–695



682 D. RADU GRECOV AND J.-R. CLERMONT

The matrix of change from the natural basis at time t to the cylindrical basis is given by

[A]=

[

′s 
�′s


′R 
�′R

]
(59)

The matrix form of the Finger tensor in the cylindrical basis ci of the physical domain can
then be expressed by

[B]ci=T[A][B]gi[A] (60)

Thus we get the following components:

Brr = (
′sBss + 

′
RBsR)


′
s + (


′
RBRR + 


′
sBsR)


′
R

Br� = (
′sBss + 

′
RBsR)
�

′
s + (


′
sBsR + 


′
RBRR)
�

′
R

B�� = (
�′sBss + 
�
′
RBsR)
�

′
s + (
�

′
sBsR + 
�

′
RBRR)
�

′
R

(61)

The Cauchy tensor can be evaluated from the Finger tensor components.

5. NUMERICAL PROCEDURE AND RESULTS

The governing equations involve the dynamic and constitutive equations, together with bound-
ary condition relations. Mass conservation is veri�ed by both analyses. We adopted a mixed
formulation where the unknowns are the pressure, the mapping functions and the stress com-
ponents Tij. Owing to symmetry properties, we consider the half-domain � of the annulus
geometry. The code, related to pure circulating and mixed regime �ow conditions, was imple-
mented on a work station (Pentium 333 MHz processor). Tests were performed for inelastic
(Newtonian and purely viscous Carreau) �uids and viscoelastic materials modelled by di�eren-
tial equations, for which comparisons with data from the literature were possible. The inertial
terms of the momentum equations were involved in the calculations and, as expected, were
found to be negligible at low velocity gradients. As �ow parameters, we used the Reynolds
number Re=�r0!=� and, for viscoelastic �uids, the Weissenberg number [11] We given by

We= �0! (62)

where �0 denotes a characteristic time. According to Luo and Tanner [17], we adopted for the
multimode K-BKZ equation (42) a mean relaxation time, expressed by the following relation:

�0 =
∑
p
(ap�2p)=

∑
p
(ap�p); p=1; 2; 3 (63)

The parameter �0 was found to be 0.6.
We also de�ne the following ratio E of the Weissenberg and Reynolds numbers as

E=We=Re (64)

5.1. Procedure and results for global transformations

When using a global transformation function �, the mapped domain �∗ is rectangular, with
variables R (06R6Ra= r1 − r0) and �, for 06�6�. The segments C∗

0 and C
∗
1 are the
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transformed lines of the curves C0 and C1 of the cylinders, respectively. The reference section
at �=0 adopted to de�ne the function 
∗ (Equation (5)) is taken at �=0.
The conditions for the global function � on the mapped boundaries C∗

0 and C∗
1 , the

respective transformed lines of the curves C∗
0 and C

∗
1 are

�= e cos� +
√
e2 cos2 �− e2 + r0 for C∗

0 (65)

and

�= r1 for C∗
1 (66)

The 2�-periodicity condition in terms of the variable � for all the unknowns is also
necessary.
The values of the function 
∗ (Equation (5)) at the reference section �=0 are a priori

unknown. This function needs to be evaluated iteratively. Its initial estimate was provided by
the Couette solution for the velocities, using the equation

R∈ [0:Ra]: 
∗(R) =
∫ R

0
v�(	)	 d	 (67)

For the next iterations, the function 
∗ was updated using the same Equation (64). The next
value of � allowed a new iterate of the v�-velocity component to be computed.
A rectangular grid, re�ned in the vicinity of the reference section �=0 in the �-direction,

but uniform in the R-direction, was de�ned in domain �∗ to discretize the unknowns and
equations. Typically, the grid used for the computations involved 30×30 mesh points. Finite-
di�erence formulae were adopted to approximate the derivatives involved in the equations.
Thus, the set of discretized governing and boundary condition equations may be written as

Aj(X1; X2; : : : ; XN )=0; i=1; 2; : : : ; N (68)

where (X1; X2; : : : ; XN )=X denotes the vector of unknowns. Thus, the following quadratic
objective function S(X) can be de�ned by means of the following matrix product of A(X)
and its transpose TA(X) such that

S(X) = TA(X) ·A(X)=
i=N∑
j=1
A2j (X1; X2; : : : ; XN ) (69)

Using the objective function S(X), the unknowns is determined by means of the Levenberg–
Marquardt optimization algorithm [32, 33] already used for numerical problems involving
stream-tube analysis [20, 21]. This procedure, which combines the Newton and gradient algo-
rithms, proved to be robust and e�cient, especially for problems where slight modi�cations
of the unknowns may lead to signi�cant changes in the equations, as in the present case that
concerns streamlines as primary variables.
The number of iterations before convergence, in the case of global transformations, was

found to be approximately 30 for all the �uids tested. The corresponding CPU time, depending
on the type of �uid under consideration, was approximately 7 s per iteration for a Newtonian
�uid and reached 210 s for the viscoelastic K-BKZ memory-integral constitutive equation.
Di�erent eccentricities and geometrical conditions were considered for various rotation rates
of the inner cylinder. Figure 3 reports the evolution of the norm of the objective function S(X)
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Figure 3. Change in the objective function versus the iteration number for di�erent �uids: + + ++:
Newtonian; ××××: Oldroyd-B (di�erential); ∗ ∗ ∗ ∗: K-BKZ (integral).

versus the iteration number Niter for di�erent �uids investigated. Better convergence occurs for
the Newtonian equation and the di�erential viscoelastic Oldroyd-B �uid, as compared to the
K-BKZ �uid. Such behaviour should be related to non-linearities involved in the di�erential
and integral models, these being more sensitive for the multiple-mode K-BKZ equation.

5.1.1. Appearance of recirculations. Such predictions may be of interest for industrial appli-
cations related to �ows between eccentric cylinders. From a theoretical viewpoint, the appear-
ance of vortices is related here to the assumptions made on the non-existence of recirculations
allowing veri�cation of the one-to-one property concerning streamlines of the physical domain
and their mapped streamlines in domain �∗ the global transformation. Consequently, a di-
vergence of the algorithm was expected for �ow parameters close to those related to the
appearance of recirculating regions. The convergence of the Newtonian results obtained with
our code, reported in Figure 4(a) with those of Diprima et al. [1], Chawda et al. [14], and
Dai et al. [34] con�rms this theoretical prediction and points out the consistency of our data
with results in the literature obtained by di�erent computational approaches. For other �uids,
there were no available data in the literature allowing such comparisons. We may conjecture
that the non-convergence of our algorithm results from the vanishing of the Jacobian of the
global transformation, in a way similar to the conditions for appearance of secondary �ows
in geometries involving open streamlines, previously investigated in stream-tube computations
[19]. For the memory-integral �uid, Figure 4(b) presents a limiting curve between the con-
vergence and divergence zones related to the algorithm, when expressing the Weissenberg
number We versus the eccentricity. Although results for such �uids were not available in the
literature, our opinion is that the separating curve is related to the appearance of recirculating
zones in the �ow region, as in the Newtonian case.

5.1.2. General results and comparisons. To express the kinematic results, we used the nor-
malized radial co-ordinate r∗ given by r∗=(r− r0− e cos �)=[�(1− � cos �)], r∗ ∈ [0; 1] where
� = r − r0. The velocity parameter (dimensionless factor) is v∗ = !r0. Consistent com-
parisons of azimuthal velocities v� between our results and data from the literature [7], for
a Newtonian and a purely viscous �uid obeying a Carreau equation, are shown in Figure
5(a) and 5(b), respectively. Figure 6 shows normalized velocity pro�les v� versus r∗ for the
three viscoelastic �uids investigated in the present work: Maxwell, Oldroyd-B and K-BKZ at a
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Figure 4. Limit curves for the appearance of recirculations: (a) for a Newtonian �uid, expressing the
Reynolds number Re as a function of the eccentricity �: —–: present work; · - · - · -: Diprima et al.
[1]; - - - -: Chawda et al. [14]; · · · · ·: Dai et al. [34]; (b) for a memory-integral K-BKZ �uid,

expressing the Weissenberg number We versus the eccentricity �.

Weissenberg number We=2:0 for �=0:1 and two angular sections (�=�=0 and �=�=�).
The curves reveal signi�cant di�erences between the three �uids, notably for the K-BKZ �uid
at �=�=0, the angle of the smallest gap between the two cylinders. These observations can
be related to di�erences in the behaviour of the K-BKZ and Oldroyd-B or Maxwell �uids.
In terms of the velocity gradient, the viscosity of both di�erential models is a constant but
decreases for the memory-integral �uid.

5.2. Numerical procedure for mixed regime �ows with local transformations

Such situations make it necessary to consider local transformations and domain decomposition.
Referring to previous results concerning �ows in the annulus of cylinders where inertial e�ects
are ignored [30], we adopted two elementary sub-domains �1 and �2 for the applications such
that �=�1 ∪�2, as shown in Figure 7(a). The angle �1 corresponds to the limiting section
between sub-domains �1 and �2 and is a priori unknown. Two reference kinematic functions
�1 and �2 are considered at the reference sections �=0 and �=�, respectively. For these
sub-domains, we de�ne two local transformations Ti : �∗

i →�i (i=1; 2), where M ∗(s; R)
→M (r; �). The mapped sub-domains �∗

1 and �
∗
2 , are illustrated in Figure 7(b). The �rst

sub-domain �1 involves only open streamlines. For sub-domain �2, open and closed stream-
lines can be considered. According to the situation depicted in Figure 2, simple meshes
may be de�ned in the mapped computational domains. Figures 7(a) and 7(b) also depict the
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Figure 5. Comparisons of normalized velocity pro�les v� versus the normalized radial
co-ordinate r∗ for �=0:25, �=�=0 and �=�=�, !0 = 5:2 rad=s: (a) Newtonian �uid:
—–: present work, · · · · ·: lubrication theory (after Berker et al. [10]); (b) Carreau �uid:

—–: present work; ♦: experimental data from Berker et al. [10].

boundary conditions for the physical domain � and mapped domains �∗
1 and �

∗
2 where the

mapped streamlines are normalized for computational purposes. The procedure to be fol-
lowed here for computing the �ow characteristics is essentially related to domain decompo-
sition methods, requiring the compatibility equations to be written at the interfaces of the
sub-domains. The solution in the total domain � should be obtained by considering local
sub-problems stated on the sub-domains �i.
The basic ideas for solving the problem can be summarized as follows:
The geometrical domain � of boundary � is divided into two sub-domains �i (i=1; 2). �1

denotes the interface of �1 and �2.
If pi corresponds to the restriction of the pressure p to �i, we may consider local

transformations 
i(s; R) and �i(s; R) that verify

• the kinematic equation (38),
• the dynamic equations (39)–(40),
• the following boundary condition equations on �∩�i,

aj(
i; �i; i; pi) = 0 (j = 1; 2)

bj(
i; �i; i; pi) = 0 (j = 1; 2)

pi = �i

(70)
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Figure 6. Normalized velocity pro�les v� versus r∗ for Maxwell (- - -), Oldroyd-B (- · - · - ·) and
K-BKZ ( ) �uids at We=2:0 (�=0:1): (a) �=�=0; (b) �=�=�.

• the compatibility conditions at the common boundary �1 of the sub-domains �1 and �2,
such that

p(M ∗
1 ) = p(M

∗
2 ); V(M ∗

1 ) = V(M
∗
2 ) on �1 (71)

where M ∗
1 ∈�1; M ∗

2 ∈�2, with r(M ∗
1 ) = r(M

∗
2 ); �(M

∗
1 ) = �(M

∗
2 ) on �1.
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Figure 7. (a) Physical domain � partitioned into sub-domains �1 and �2; (b) mapped sub-domains �∗
1

and �∗
2 involving boundary conditions.

As pointed out previously, for every sub-domain �i, we consider a reference section Si to
which corresponds a kinematic function �i, a priori unknown.
To solve the problem, the main features of the algorithm can be written according to the

following process, given a numerical procedure for solving the equations, upon convergence
criteria:
(i) Initialization: De�nition of the sub-domains �1 and �2; choice of the reference sections

S1 and S2.
A geometrical shape of the streamlines is assumed, as also the kinematic function �i[0]
in every mapped sub-domain �∗

i , related to the reference section Si. The initial guess of
the streamlines corresponds to an estimate of the local functions 
i and �i.

(ii) Solve the following set of equations involving the kinematic equation (38), the dynamic
equations (39)–(40) and boundary conditions (70)–(71) in the total �ow domain �∗.

As for global transformations, we still used the Levenberg–Marquardt optimization algorithm
to solve the set of governing equations. In the Newtonian case, the initial estimates of the
separation angle �1 between the sub-domains �1 and �2 and of the kinematic function to
be de�ned at the reference sections were given by the lubrication theory [7]. The size of
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Figure 8. Change in the norm of the objective function versus the iteration number in mixed �ow
regimes: (a) Newtonian �uid; (b) Memory-integral K-BKZ �uid.

the computational sub-domains is expected to change during the iterations in relation to the
moving positions of the separating angle between the two domains. For the non-Newtonian
�uids we used as initial estimates the computed Newtonian results. The change in the norm
of the objective function S(X) versus the iteration number Niter for the Newtonian and the
viscoelastic K-BKZ �uid in the same geometry, shown in Figures 8(a) and 8(b), indicates a
lower number of iterations before convergence for the Newtonian �uid. However, satisfactory
convergence in obtained in both cases. Our simulations concerned various geometries and �ow
conditions corresponding to di�erent rotation rates of the moving cylinder. The assumption
of �ow symmetry was validated by considering �rstly the total domain (06�62�) between
the eccentric cylinders in our preliminary calculations, thus leading us to reduce the domain
of investigation such that 06�6�. In these latter conditions the number of equations and
unknowns was approximately 1000.

5.2.1. Comparisons for Newtonian and viscoelastic di�erential �uids. Figure 9 presents, for
a large gap between the eccentric cylinders (r0 = 15 mm, r1 = 30 mm, e=7:5 mm, with a
rotation rate !=250 rad=s), our numerical results (solid lines) for the streamlines, compared
to those previously obtained by Kelmanson [35]. Close agreement between the results may be
observed. An example of consistent comparisons with data from Berker et al. [10] is given
in Figure 10 for the normalized velocity pro�les v� (r0 = 29:9 mm, r1 = 30:3 mm, �=0:5,
!=5:2 rad=s) at the azimuthal sections �=0 and �. However, some discrepancy can be
observed in Figures 11(a) and 11(b) for comparisons with data from Beris et al. [12], related
to the normalized velocity pro�les vr in a journal bearing �ow situation, at the azimuthal
sections �=�=2 (r0 = 30:0 mm, r1 = 33:0 mm, �=0:4) for We=2 and 4, respectively.
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Figure 9. Computational results for the streamlines (Newtonian �uid): —–: present work. ♦:
Kelmanson data [35]. The geometrical parameters are: r0 = 15mm, r1 = 30mm, e=7:5mm. The

inner cylinder rotates at !=250 rad=s.

Figure 10. Comparisons between normalized velocity pro�les v� for �=0:5, !=5:2 rad=s at the
azimuth sections �=0 and �=� for a Newtonian �uid: – – –: present work, ∗ ∗ ∗: results

from Berker et al. [10] (Newtonian �uid).

Table II. Limit numbers Remax, Wemax and E corresponding to journal bearing geometries denoted by
A1, A2, A3 and A4 (K-BKZ memory-integral �uid).

Geometry r0(mm) r1(mm) � !max(rad=s) Remax Wemax E = We=Remax

A1 29.9 30.3 0.4 6.6 42 25 5.95
A2 29.9 30.3 0.5 9.1 58 35 6.03
A3 29.9 30.3 0.6 6.6 42 25 5.95
A4 29.9 30.3 0.7 3.9 25 15 6.00

5.2.2. Memory-integral viscoelastic �uid. Various geometries and �ow conditions correspond-
ing to di�erent Reynolds and Weissenberg numbers were considered when using the viscoelas-
tic K-BKZ �uid. In conditions of journal bearing �ows, the limiting Reynolds and Weissenberg
values attained before divergence of the algorithm were found to depend on the eccentricity,
as shown in Table II. It may be observed that the minimum limit values of Re and We are
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Figure 11. Comparisons with data from Beris et al. [10], for normalized velocity pro�les vr in
a journal bearing geometry at the azimuth section �=�=2 (r0 = 30:0 mm, r1 = 33:0 mm, �=0:4)

for (a) We=2 and (b) We=4 (Maxwell �uid).

obtained for the maximum eccentricity between the cylinders. The limit ratio E=We=Remax of
Table II is found to be practically a constant. For the same Weissenberg number (We=10),
Figures 12(a)–(c) presents streamline contours for di�erent eccentricities (�=0:4; 0:5; 0:7)
under journal bearing conditions. The plots of the streamlines indicate an increase of the re-
circulating �ow region with growing eccentricity. The stresses computed with this constitutive
equation are given for �=0 (maximum gap between the cylinders) in Figure 13, for the T r�

stress component. It should be underlined that for the Newtonian �uid, this stress component
vanishes and there is no recirculation in this case with this model. The shear component T ∗r�

does not behave monotonically with respect to the Weissenberg number and the normalized
co-ordinate r∗. Such results point to the complexity of the predicting �uid behaviour in journal
bearing conditions, in relation to viscoelasticity.
In conditions of journal bearing geometries related to lubrication problems, it is of interest

to evaluate the torque C on the inner cylinder of radius r0, given by

C=− (r0)2
∫ 2�

0
T ∗r�|r=r0 d� (72)

For the K-BKZ equation, using a dimensionless factor C0 (chosen as C0 = 10 N (see Ref-
erence [23]), the change in torque versus the Weissenberg number We, in conditions corre-
sponding to di�erent eccentricities of the geometries A1, A2 and A3 (Table II) are given in
the range 0–6 of We (Figure 14(a)) and, with higher values, up to We=30 (Figure 14(b)).
It may be observed that with small values, the torque is a growing function of We and, with
higher values of We, it is found to decrease versus We. These results also point to the complex
behaviour of viscoelastic �uids used in journal bearing conditions.
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Figure 12. Computed streamlines in a journal bearing geometry (r0 = 29:9 mm, r1 = 30:3 mm)
for di�erent eccentricities at the same Weissenberg number We=10:0, with the K-BKZ �uid:

(a)�=0:4; (b) �=0:5; (c) �=0:7 (the plots are not to scale).

6. CONCLUSIONS

The formulation presented in this paper has provided a uni�ed approach for the simulation
of complex �ows involving open streamlines, closed streamlines or both situations, by using
global or local transformations and domain decomposition. The �ow characteristics are de-
termined by means of unknown transformation functions de�ned on a mapped computational
domain. The automatic veri�cation of mass conservation from the basic equations and the
fewer di�culties in particle tracking related to constitutive equations with history-dependence
are signi�cant advantages of the approach that deserve to be underlined. Applications to �ow
calculations in annular geometries between eccentric cylinders, for di�erent classes of �uids,
have validated the method by consistent comparisons with existing data from the literature.
In addition, some interesting results have been presented, concerning notably:
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Figure 13. Change in the normalized stresses T∗r� versus r∗ for We=0 (Newtonian
�uid), We=5 and 10, with geometry A2 of Table I (�=0:5) using the memory-integral

constitutive equation at the azimuthal section �=0.

Figure 14. Changes in the torque versus We for di�erent eccentricities (geometries A1, A2 and A3)
with the memory-integral K-BKZ equation: (a) range 0–6 of We: - - -: �=0:4; —: �=0:5; · ·: �=0:6;

(b) higher values of We: – – –: �=0:4; - - -: �=0:5; · - · - · -: �=0:6.
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• the appearance of recirculation, that is related to the limit of convergence of the
algorithms based on global transformations;

• for the �rst time, to our knowledge, numerical results with a realistic K-BKZ memory-
integral constitutive equation. Particularly, the numerical predictions with this model have
pointed out that �ows of polymers associated with lubrication processes are extremely
complex to describe.
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